
Femmehacks
Intermediate Web Dev

Let’s Build your Website!

Set up a repo

Click “Start a Project” and create your
repository
A repository is where all of your code

gets stored.

https://github.com/

Instead of “my-website,” name it your

own name, like “adalovelace” or

“ameliaearheart”

(this is what will show in the URL when

you publish it later)

https://github.com/

Open up Terminal
 Go to your Desktop or folder of choice in Terminal using “cd”

cd ~/Desktop

mkdir FemmehacksDemo

cd FemmehacksDemo

ls

Tell Github where
your code is
Copy the url mentioned in your repo

git clone https://github.com/blahblahblah

Pick a text editor
I like Sublime. You can download it at

https://www.sublimetext.com/3

Open the application once it downloads

Open the folder where the github repo is

saved

Create a new file using CTRL+N

http://bit.ly/2DXg0M9

https://www.sublimetext.com/3

Boilerplate HTML
● Start with this every time
● <head> = metadata
● <body> = actual content

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>TITLE HERE</title>
 <meta name="description"
content="DESCRIBE YOUR WEBSITE">
 <meta name="keywords"
content="KEY, WORDS, HERE">
 </head>

 <body>

 </body>
</html>

Headers and Paragraphs
● <h1> … <h6> Text! </h1> etc.

○ Headers
● <p> Text here </p>

○ Paragraph tags
○ Enclose text in a formatted

paragraph
●

○ Line break
○ Like hitting “enter”
○ Doesn’t have a closing tag

<body>
 <h1>Puppies for Philly</h1>
 <h3>Bow wow wow wow</h3>

 <p>Puppies are PAWsitively
 cool!</p>

 <p>Life would be RUFF,
without
 puppies.</p>
</body>

id and class in HTML
● Many , but one special list

○ ex: navigation bar
● Solution: use id attribute

○ Single, unique element

● A whole section of your website
○ ex: about me - all blue

● Solution: use class attribute
○ Multiple elements with

shared properties

<div id=”unique-section”>

 Poodle
 Golden Retreiver

</div>

<p>Words words words words words
words.</p>
<p>More words.</p>

<div class=”regular-section”>
 <p>LALALALALLAL</p>
 <p>More LALALALALAL.</p>
</div>

Make it pretty
http://materializecss.com/get
ting-started.html

Include the right code on your
html page, so that it knows
where to find the css

http://materializecss.com/getting-started.html
http://materializecss.com/getting-started.html

Let’s get a navbar
http://materializecss.com/navbar.html

 <nav>

 <div class="nav-wrapper">

 Logo

 <ul id="nav-mobile" class="right hide-on-med-and-down">

 Sass

 Components

 JavaScript

 </div>

 </nav>

http://materializecss.com/navbar.html

 <div class="row">

 <div class="col s12 m7">

 <div class="card">

 <div class="card-image">

 Card Title

 </div>

 <div class="card-content">

 <p>I am a very simple card. I am good at containing small bits of information.

 I am convenient because I require little markup to use effectively.</p>

 </div>

 <div class="card-action">

 This is a link

 </div>

 </div>

 </div>

 </div>

Image card

Adding files and committing
Tell github which files you want to update and track

git add .

OR

git add file.html file2.txt ...

Tell github you are ready to commit the changes

git commit -m “changed the readme”

Send your changes to the online folder

git pull origin master

git push origin master

Go to settings

Enable Github Pages

By clicking “Master branch” and saving

Now go to ______.github.io

Your username here

Freestyle time!
Use the mentors to help
improve your website

Welcome to
Flask

Overview
Flask is a microframework for created a web app in Python.

Flask depends on Jinja, a template language that renders the pages your application
serves, allowing you to dynamically generate HTML pages.

Reference Code:
https://github.com/saniyah-sh
aikh/fh20-intermediate

https://github.com/saniyah-shaikh/fh20-intermediate
https://github.com/saniyah-shaikh/fh20-intermediate

WARNING
if you copy/paste code from this presentation,

you will likely need to delete and retype any
quotation marks so they use the right

characters.

Installation
Follow the instructions at
https://flask.palletsprojects.com/en/1.1.x/installation/#install-flask

1. Install virtualenv
2. Activate the environment
3. Run pip install Flask to install Flask in the activated environment

If you get pip not found, Google Anaconda, and download and install the right
version for your computer, then try again.

https://flask.palletsprojects.com/en/1.1.x/installation/#install-flask

Making an app
Here’s the code in app.py for the most minimal app:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

if __name__ == "__main__":
 app.run()

Additional Considerations
Jinja templates cannot perform calculations or call APIs. Jinja templates should only
have simple if statements and loops that access already existing information in the
data structures you have passed through from Python.

Make sure to wrap code statements like so: {% for x in [“a”, “b”]: %} and
variables like {{var}}

Running
Run using python [file] , where file is the name of your python file (including .py extension).

It will print out a URL to view the app - you can paste this into your browser.

If you see python: can't open file ‘[file]': [Errno 2] No such file or directory ,

you might be in the wrong directory. Use the cd and ls commands to move directories until ls shows you

the file you are trying to run.

Alternatively, make [file] the complete file path - you can look this up in your file explorer, or by dragging the

file into a terminal window.

Passing in data
In your template file (ex: index.html), you should have something like:

<!DOCTYPE html>

<html>

<head>

<title>My Website</title>

</head>

<body>

<p>My name is {{name}} and my
favorite hackathon is
{{hackathon}}.</p>

</body

</html>

Passing in data
Change the import statement to import the render_template function, like so:

from flask import Flask, render_template

Now, change the return statement to return rendered HTML based on your template (index.html), and some

data (a name and a hackathon)

return render_template('index.html', name=”Saniyah”, hackathon=”Femmehacks”)

After running the code, you should see the HTML appear in localhost. You can do this with any kind of data -

strings, ints, lists, dictionaries, objects...

Handling POST requests
1. Import request: from flask import request
2. Create a new route which will only respond to POST requests:

@app.route('/receiver', methods = [“POST”])

3. Define a function (you can pick what to name it)
4. Get data from the POST

username = request.form.get(“username”)

5. Do whatever you want with the data! You can use render_template as before to
return an HTML file, but will need to add “GET” to the methods.

Sending POST requests
This will be done entirely from your html - here is an example, which should go
within the body of your html file:

<form method="post" action="/receiver">

 <input type="text" name="username">

 <button type="submit">Upload</button>

</form>

Relevant Links
https://galaxydatatech.com/2018/03/31/passing-data-html-page/

https://stackoverflow.com/questions/22947905/flask-example-with-post

https://teamtreehouse.com/library/using-forms-for-post-requests

https://galaxydatatech.com/2018/03/31/passing-data-html-page/
https://stackoverflow.com/questions/22947905/flask-example-with-post
https://teamtreehouse.com/library/using-forms-for-post-requests

